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Abstract: MRI-based classification of brain tumors is an important step in delivering timely and effective
treatment. In this study, we tested a method that uses CNNs trained via transfer learning to classify the
three main types of brain tumors (gliomas, meningiomas, and pituitary tumors). Mendeley dataset is taken
into consideration, containing 6,056 MRI images (2004 brain glioma, 2004 brain meningioma, 2048 brain
pituitary). Two types of CNN architectures were tested, AlexNet (trained from scratch) and InceptionV3
(using the weights from ImageNet). All of the images were preprocessed before being fed to the models
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using image resizing, normalization, and extensive augmentation to ensure accuracy and minimize class
imbalance between the tumor categories. Effectively stratified train-test splits of the data allowed for fair
performance evaluation of both models. The AlexNet model consistently achieved 94% accuracy, with a
precision, recall, and Fi-score of 94%, indicating that it could provide reliable performance when classifying
brain tumors based on MRI. In contrast, the InceptionV3 model using transfer learning and fine-tuning
performed even better than AlexNet, achieving 98% accuracy with a precision, recall, and F1- score of 98%.
These results indicate that pre-trained convolutional neural network architectures provide increased
classification reliability, significantly reduce training time, and are applicable to medical datasets that
contain limited numbers of instances. The findings of this research study illustrate the potential for
developing highly accurate and efficient automated deep learning technology to accurately diagnose neuro-
oncology diseases using transfer learning. This type of technology will provide a strong basis for Clinical
Decision Support Systems (CDSS) that aid radiologists with the interpretation of diagnostic medical
images.

Keywords: Brain Tumor, Glioma, Meningioma, Pituitary Tumor, Transfer Learning, Image Classification,
Brain Tumor Classification, Convolutional Neural Netrwok, Magnetic Resonance Imaging

1. Introduction

1.1 Background on Brain Tumors and MRI Diagnosis

The abnormal intracranial growths of the cells of brain or nearby areas are the brain tumors whose
localization, size and heterogeneity make diagnosis challenging. Standard MRI with T1, T2 and FLAIR
sequences provides high contrast, non-invasive visualization of such lesions and is the imaging modality of
choice for initial detection and characterization. [1][2]

1.2 Challenges in Manual MRI Interpretation

Manually interpreting MRI scans for brain tumor diagnosis takes a lot of time and it also heavily relies on
the radiologist's expertise. It experiences significant inconsistencies both between different readers and
within the same reader, for example, segmentation variability for brain tumors showed average Dice scores
approximately 0.75 (95% CI 0.701-0.808) across various methods.[3][4] The variation in tumor
characteristics (such as size, shape, location, and contrast) along with the imaging artifacts and differing
acquisition protocols, makes it more difficult to accurately delineate and classify lesions, increasing the
chance of misdiagnosis or postponement of treatment. [5][6]

1.3 Research Gap and Motivation

Although there has been significant advancement in the automation of MRI based brain tumor classification
machine learning and deep learning methods, there are still several gaps exist in the literature. Many studies
are based on single deep learning architectures and fail to compare multiple pretrained or transfer learning
models to determine which would provide the greatest level of multiclass classification (for example,
gliomas, meningiomas, pituitary tumors). [7][8] Class imbalances, heterogeneous datasets (including
different protocols and MRI machines), and inefficient computational processes are rarely accounted for in
the development of machine learning models. [9][10] Hence, there is a need to create an efficient, accurate,
and robust classification system that uses transfer learning to diagnose multi-class brain tumors across
multiple types of imaging equipment.

1.4 Contributions of This Work

In this study we proposed a classification pipeline for MRI using transfer learning to enable accurate
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identification of glioma, meningioma, and pituitary tumors. Key contributions of this study include
comparative analysis of pretrained CNN architectures, the use of effective preprocessing techniques and
augmentation techniques and the enhanced accuracy in diagnosing brain tumors, thus providing a practical
approach for automation of the diagnostic process for brain tumors.

1.5 Paper Organization

ISSN: 1710-0305
PISSN: 1189-4563

This paper is structured as follows: Section 2 of this paper contains related work on MRI-based brain tumor
classification and transfer learning. Section 3 of this paper contains details about the dataset, preprocessing,
and proposed transfer learning pipeline. Section 4 of this paper describes experiments and evaluation
metrics. Sections 5 and 6 present results, discussion, and clinical implications, followed by conclusions in
Section 7.

2. Related Work

2.1 Related Research works and Studies for Brain Tumor Classification

Table 1. Comparative analysis of existing techniques and mythologies for Brain Tumor Classification

S.No.Author |Year Technology Used Performance Key Insight
1 [Zhang [11] | 2011 | Wavelet transform,  |ccuraciesonboth  |Applied this method on 66 images
principle component  [training and test (18 normal, 48 abnormal) and the
analysis and back images are 100% computation time per image 1s
propagation (BP) NN only 0.0451 s.
'W. H. Principle = Component| Classification 3x58 datasets of MRI Brain segital
. o | ..
> rahim [12]| 2013 Analysis (PCA), andfaccuracy of 96.33% |images have been us.ed for tainting
Back-Propagation and testing
Neural Network
N. Support vector Determination of normal and
3 | Abdullah | 2011 machine (SVM) Accuracy of 65% abnormal brau? 1@age 1s.b§sed'on
[13] symmetry which is exhibited in
the axial and coronal images
Genetic algorithm and Parameters used for analyzing the
4 Kumar [14]] 2017 support vector machine curacy between 80% images are given as: entropy,
(SVM) o smoothness, root mean square
and 90%
error (RMS), kurtosis and
correlation
Fully Automatic Proposes the separation of the
Heterogeneous o ._| whole cerebral venous system into
. ) 08.51% accuracy in . . . ..
Segmentation using . MRI imaging with the addition of a
. detecting abnormal . .
5 [£.Jia[15] 2025 Support Vector | - isue new, fully automatic algorithm
Machine (FAHS- SVM) based on structural,
morphological, and relaxometry
details
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6 [BadZa, M. | 2020 mvolutional Neural curacy of 96.56% Tested on T1-weighted contrast-
M. [16] Network (CNN) enhanced magnetic resonance
images
VGG-16 achieved Experiment is tested on a very
[s) _ .
an HA [17] VGG-16, ResNet-50, 96%, ResNet-50 |small dataset but the experimental
. o result shows that our model
. achieved 89% and ) .
7 2020| and Inception-v3 . accuracy result is very effective and
Inception-V3 .
models have very low complexity rate
achieved 75%
accuracy
Extracted features from an
. o enhanced MR brain image using a
Ullah [18] ranced Deep Neural ained 95.8% .
Network (DNN) accuracy discrete wavelet transform and
8 2020 these feature are further reduced
by color moments i.e. mean,
standard deviation, and skewness
Feed Forward - ANN
(FF_AI,\I.N)’ a hybrid FF-ANN gives Used images with brain tumor,
classifiers called: o . .
) 95.83% accuracy, |acute stroke and alzheimer, besides
Random Subspace with . . . .
Random Forest RSwithRF gives normal images, from the public
9 |Assam [19]| 2021 andom rores 97.14% and dataset developed by harvard
(RSwithRF) and . . . .
RSwithBN gives medical school, for evaluation
Random Subspace o
95.71% accuracy purposes
with Bayesian Network
(RSwithBN)
S. Transfer learning- VGG-16 gives
- 1 [}
10 | Chetana |2022 based CNN-pretrained aceuracy Of96'9/°’ [ brain tumor images dataset
[20] VGG-16, ResNet-50, | Inception-v3 gives consisting of 233 images
. 78% and ResNet50
and Inception-v3
models gives 95.0%

2.2 Identified Research Gaps

The results of investigation into the current MRI-based detection of brain abnormalities indicates the need
for further investigation into a significant number of important limitations. A major limitation of early
studies using wavelet transformations, PCA's, and BP-NNs is that although they were able to achieve
significant levels of accuracy, their data sets typically consisted of very small numbers of images, e.g. 66-
image dataset used in [11] by Y. Zhang and the 3x58-image dataset evaluated in [12] by W. H. Ibrahim,
which severely limited the generalizability of the model. Analogously, models that rely on symmetry
analysis and handcrafted feature extraction techniques, such as those described in [13] by N. Abdullah and
[14] by S. Kumar, possess little to no capacity to adequately represent the full spectrum of tumor features
due to a lack of representation of features from multiple tumor types, leading to decreased performance
across many tumor types and MRI modalities.
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Second, while recent methods utilizing deep learning (i.e., CNN and transfer learning based model) have
demonstrated enhanced performance [16-18, 20], there remain dataset limitations that were recognized in
many studies regarding limited sample sizes as well as missing many of the multimodal MRIs which
precluded these networks from being able to identify heterogeneous tumor features. Additionally, most of
the available literature centres predominantly on classification rather than development and evaluation of
complete or end-to-end solutions for segmentation and diagnosis although there has been development of
the FAHS-SVM segmentation algorithm for venous anatomical structures [15], highlighting an important
gap regarding how to adequately create joint segmentation or classification models. Furthermore, as noted
in numerous papers utilizing public datasets [19], studies vary in how they assess a dataset. The protocols
utilized in assessing the datasets used vary significantly due to the use of different MRIs, imbalanced classes
and a lack of cross validation between datasets, therefore making it virtually impossible to establish a
standardized benchmark for reliably comparing models. Additionally, although the VGG-16 and RSwithRF
methods are very high accuracy models [17-20], they do not appear to have been studied for their
computational efficiency and scalability or whether they are applicable for clinical use in a real time setting,
thus creating an opportunity for developing computationally optimized and clinically applicable solutions.

3. Materials and Methods
3.1 Dataset Description

3.1.1 Source and Characteristics of MRI Dataset

The Bangladesh Brain Cancer MRI Dataset [21] contains 6056 images that were collected in multiple
hospitals across Bangladesh under the guidance of trained professionals. The MRI images were resized to
512 by 512 pixels and represent three different types of tumors: 2004 Brain Glioma, 2004 Brain Menin, and
2048 Brain Tumor. It provides machine learning and deep-learning experts with a valuable, comprehensive
resource for developing and assessing algorithms for the automatic diagnosis of brain tumors.

3.1.2 Tumor Classes: Glioma, Meningioma, Pituitary

The dataset separates the different brain tumor types into 3 classifications: glioma, a malignant tumor that
arises from glial cells, meningioma, which is generally a benign tumor that is located in the meninges, and
pituitary tumor, which is found within the pituitary gland. This allows MRI multi-class classification for
diagnosing & treating the brain tumor types accurately. [12]

Fig.2. Representative MRI slices illustrating meningioma-affected brain regions from the dataset
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Fig.3. Representatie MRI slices illustrating Tumor-affected brain regions from the dataset

3.2 Preprocessing Pipeline

Image Resizing and
Raw Data Normalization Data Augmentation Training Data Testing Data

1~ :

Fig.4. Preprocessing pipeline illustrating the sequential operations applied to the brain tumor dataset,
including image resizing and intensity normalization, data augmentation techniques, and the train—
validation split strategy

3.2.1 Image Resizing and Normalization

The deep learning architecture AlexNet along with InceptionV3 requires input images to be in standard
format of 224 x 224 pixels, so we resized the input MRI images into the standard format to match the input
requirements of the networks. Standardizing all images to the same size increases efficiency because it
permits one GPU processor to work through a complete set of images. By standardizing the size of every
image, the order of all pixel array positions remains intact when using them for convolution. InceptionV3
and AlexNet models also require that all pixel array values within an original input image be scaled back to
a numeric range of [0, 1]. The normalization of pixel values increases the stability of the training process
through gradient updates, thereby enhancing the learning rate. In addition to the standard image resizing
and normalization processes, InceptionV3 requires additional specific image preprocessing when using the
pretrained weights on the dataset so that the correct weights can be utilized when performing image
classification. All of these preprocessing techniques assist in providing a uniform dataset input to the model,
reduce computation resources needed to train the model, and enhance the ability of the model to rapidly
learn and extract critical characteristics of images from MRI scans for the purpose of predicting their
classification.

3.2.2 Data Augmentation Techniques

In order to mitigate overfitting and promote generalization of the models, we used augmented data for both
AlexNet and InceptionV3. We used different augmentation techniques such as random rotations, zooming
in, shifting the image both vertically and horizontally, flipping horizontally, changing brightness levels, and
performing shear transformations; these techniques were intended to simulate realistic variations in MRI
imaging. The increased effective number of images in the training dataset due to augmentations exposes
the model to a greater variety of imaging environments which improves its ability to extract features
effectively. While augmentations of AlexNet trained from scratch provided a tremendous benefit by way of
additional examples due to limited amount of training data, augmentations for InceptionV3 provided a
benefit as well from pretraining on trained imaging features and fine-tuning using high-level imaging
features. These three approaches combined allowed both networks greater ability to generalize to
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previously unseen images, and reduced the likelihood of biasing towards specific images due to orientation
or brightness variation.

Fig.5. Augmented MRI images generated from the brain tumor dataset. The figure illustrates a variety of
applied augmentation transformations

3.2.3 Train—Test Split Strategy

To maintain an even representation of all classes within the training and testing datasets for both AlexNet
and InceptionV3, we used stratified splitting. We have taken five different train-to-test ratios that are 10:90,
15:85, 20:80, 25:75, and 30:70, to achieve the best balance between training and testing. The larger amounts
of training data provided enough information for the models to learn the necessary features from the data,
while the corresponding testing datasets provided a way of monitoring possible overfitting and also allowing
for tuning of hyperparameters. The fine-tuning of InceptionV3 was enhanced by this method, by preserving
previously learnt features from the pre-training stage. By using this method, both models were trained on
diverse samples and thus reduced the chances of overfitting, as well as providing accurate metrics for
comparative purposes for classification of brain MRIs.

3.3 Transfer Learning Framework

3.3.1 Overview of Transfer Learning Paradigm

Transfer learning is a machine learning approach that takes advantage of what has already been learned by
using large data sets to help with the performance of a machine learning task being trained with a limited
data set (target task). In this research project, AlexNet was developed from scratch due to its simpler
architecture than InceptionV3 and InceptionV3, on the other hand, utilized the pre-trained weights from
ImageNet to jumpstart its transfer learning capabilities. By retaining the learned features from previous
data sets within each model (and using them as inputs), it allows these models to be trained to identify
relevant features in brain MRI scans much more quickly than if they were trained on the MRI images alone.
Thus, using transfer learning allows both types of models to perform better when classifying the different
types of brain tumors (increased accuracy) and to not be overfit (avoid classification inaccuracies due to
overfitting).

3.3.2 Selection of Pre-Trained CNN Architectures

In this study we selected AlexNet and InceptionV3 models because they possess features that complement
each other. AlexNet has a shallower architecture and fewer layers so that we can easily demonstrate how
well it performs after being trained from scratch with the MRI images. On the other hand, the more
advanced and deeper architecture of InceptionV3 has Inception modules that allow effective capturing of
features at multiple scales with the use of pretrained ImageNet weights to develop superior classifiers from
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features generated by millions of previously seen images. Therefore, we are capitalising on the advantages
that both training methods have to offer that is the simplicity of AlexNet and the transfer learning
capabilities of InceptionV3. Consequently, we are able to make a direct comparison of the feature
extraction, rate of training convergence and classification accuracy for brain tumors between the two
models.

Fig.6. Basic Architecture of Convolution Neural Network

3.3.3 Fine-Tuning Strategies and Layer Freezing

In this study, for the fine-tuning of the pretrained InceptionV3 model we selectively unfreeze layers of the
model to adapt it to the MRI image dataset retaining useful learned features that were acquired during
original training. For the training of the model, we initially kept the lower layers of InceptionV3 frozen while
we retrained the upper layers on MRI images to capture domain specific features. Then we took a gradual
approach to reach our goal of fully fine-tuning InceptionV3 using the lower learning rate so as to avoid
catastrophic forgetting. AlexNet on the other hand was trained from scratch and hence did not need to keep
any of the layers frozen; however, various techniques of regularization and dropout were employed to
mitigate the potential for overfitting.

3.4 Proposed Classification Pipeline

Training Data

o \ H i

: o1 M H
£ - - :
: —
: ~N :
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1/—\ Testing Data
| i
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Fig.7. Proposed classification pipeline for brain tumor detection, illustrating the sequential stages of
feature extraction, model architecture with custom layers, and optimization strategy

3.4.1 Feature Extraction Process

The feature extraction process changes the input image into an understandable representation for the
classification to occur based on that representation. An example of this is AlexNet where the features were
learned directly from MRI images by processing them with a series of convolutional and pooling layers that
learned hierarchical feature representations of the model (edge detection, textures). With InceptionV3, the
model used the pretrained weights from ImageNet as a good set of general purposes for learning features
and fine-tuned these features onto the brain MRI data in order to learn the specifics of this domain. Both
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AlexNet and InceptionV3 utilized convolutional operations to capture spatially embedded information
within the image efficiently, allowing InceptionV3 to utilize its multiple-scale inception modules to learn
the ability to capture fine and coarse features simultaneously, allowing the model to have a better ability to
differentiate between tumor groupings and improve the overall classification.

3.4.2 Model Architecture and Custom Layers

The AlexNet architecture has five convolutional layers separated by max pooling layers, followed by fully
connected layers for classification using dropout and softmax layers. The InceptionV3 architecture adds the
ability to learn multi-scale features through the use of Inception modules along with deep convolutional
layers and then performs global average pooling, followed by Densely Connected Layers and dropout layers
for regularization. To perform brain MRI classification, we added custom layers onto both architectures.
Dropout layers are used to control overfitting and Dense Layers are used as inputs for the determination of
final classifications and decisions. Each of the models contains an optimal amount of depth, feature richness
and the computational power needed for superior performance.

3.4.3 Optimization Algorithms and Hyperparameters

We used the Adam Optimizer for training both models, automatically adjusting learning rates based on
each parameter to increase the speed of convergence. The initial learning rate 0.0001 is used for AlexNet
during the training phase, where the model is trained from scratch.InceptionV3's initial learning rate of
0.0001 during transfer learning and 0.00001 during fine-tuning. A loss function of categorical cross-
entropy with label smoothing (0.1) is used to improve generalization. The batch size of 32 is used for
training, along with early stopping and reduction of the learning rate on plateaus to prevent overfitting.
Dropout rates of 0.5 in dense layers are used as a regularization technique. The hyperparameters that we
set for training both models are selected to maximize efficiency and stability while also allowing for good
generalization on the MRI dataset.

3.5 Evaluation Metrics

3.5.1 Accuracy, Precision, Recall, F1-Score

Aeccuracy — Proportion of correct pradictions over zll zamplas.

True Pogitive + Trus Negative

Accuracy = — - — -
True Positive + True Negative + False Positive + False Negative

Precizion — Proporbion of correctly predicted pozitives among pradicted positives.

. Trua Positive
Precision =

True Pogitive + False Positive

Recall (Sensitivity) — Proportion of correctly predicted positives among actual positives.

True Positive
Recall =

Trus Poritive + Falze Negative
F1-5core — Harmonic mean of precizion and recall.

Precizion = Recall
Fl—Score = 2 4 ————onou0
Pracizion + Recail

https://revuetangence.com 191



BN TANGENCE ISSN: 1710-0305
." Number 137, 2025 PISSN: 1189-4563

3.5.2 Confusion Matrix Analysis

The confusion matrix shows how the classification is performing by showing the number of True Positives,
True Negatives, False Positives, and False Negatives from a classification model. It provides insight to see
how the errors are being made on each individual class and provides a better way to see where
misclassification is occurring. It will allow you to calculate other evaluation metrics such as accuracy,
precision, recall, and F1i-score.

4. Experimental Setup

4.1 Hardware and Software Specifications

The selection of computer hardware (an Intel Core i7 processor, 32 GB of RAM, and an NVIDIA GeForce
RTX 3080 Graphics card) allowed researchers to perform their deep-learning experiments as efficiently as
possible in the shortest amount of time, compared to traditional computer systems. The use of high-speed
HDDs to store/transfer MRI data provided researchers direct access for write/read operations in
comparison to traditional methods. Windows 11 was chosen for use as the Operating System and Python
3.10 was selected as the Programming Language. Data generated by AlexNet and InceptionV3 was used to
facilitate research and testing on various combinations of hyperparameters, augmentations, and tuning
techniques within the earliest timeframe possible.

4.2 Implementation Environment

The Keras API in TensorFlow 2.x made it possible to use this framework for the implementation of both
AlexNet and Inception V3, allowing the design of models flexibly and providing for pretraining the models
and setting up a pre-processing pipeline. A number of the features offered by TensorFlow provided the
means for creating unique/custom layer designs with dropout and the global pooling layer types.
Augmenting the training set using the ImageDataGenerator class allowed for developing an ensemble of
possible input data for training and allows for loading of batches in real-time. By enabling the use of the
Graphics Processing Unit to perform the forward and backward passes of the model more quickly through
the use of CUDA and cuDNN and to visualize the training and validation metrics through TensorBoard, this
development environment provided a clear path to support both the training from scratch of AlexNet and
the fine-tuning of pre-trained models using Inception V3.

4.3 Training Parameters and Batch Settings

To optimize GPU memory and gradient stability, each model had a batch size of 32 that was utilized
throughout the training process on our two models. The Adam optimizer was used at the beginning of
training with an initial learning rate of 1e—4, which was then decreased to 1e—5 during its successful fine-
tuning on the InceptionV3 model. Early stopping with patience set for five epochs also assisted with limiting
overfitting; along with using the ReduceLROnPlateau method of the Adam Optimizer to help fine-tune the
model, reducing the learning rate relative to the validation loss. For the two hundred twenty epochs that
were run and ultimately the ten total epochs that were used to fine-tune InceptionV3, we froze all the non-
fine-tuned layers at the end of the training phase. Regularization due to dropout was introduced to one
layer in the case of both Models where all fully connected layers (the input and output connections) utilized
dropout rates of 50 percent. As such parameters ensure that convergence occurs in all instances of our fine-
tuning process even while also providing for effective training of MRIs utilizing the InceptionV3
architecture.
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4.4 Cross-Validation Protocol

The use of stratified k-fold cross-validation is a method used to help evaluate how the models we train
perform robustly and produce splits with less bias in regard to the imbalanced data. The training-testing
ratio of the dataset was selected multiple times (10:90, 15:85, 20:80, 25:75, and 30:70) to ensure that the
splits produced during stratified k-fold cross-validation had the same distributions of all classes across the
various folds. Since each fold used to train and validate the model was separate and independent, we can
use the average performance metrics (accuracy, loss, and F1 score) to provide a more reliable estimate of
how our final model will perform when encountering previously unseen images from MRI scans, whilst
minimizing the chance of overfitting. We were able to see how both AlexNet and InceptionV3 models
generalized to new images. Cross-validation has provided valuable data to identify how hyperparameter
tuning will be affected by the increasing volume of training data for both models. With cross-validation
results, end-users may gain further insight into how they might select which model best suits their purposes
in the future.

5. Results

5.1 Quantitative Results for Each Model

5.1.1 Performance Comparison of CNN Architectures

Table 2. Performance Report of Inception V3 model on Brain Tumor Dataset for different Train-Test

ratios
Train Model Used Precision (%) Recall (%) F1-Score (%) | Accuracy (%)
'Validation
Ratio
90:10 98.00 98.00 98.00 08.34
85:15 98.00 98.00 98.00 97.91
80:20 [nception V3 98.00 98.00 98.00 98.10
75:25 98.00 98.00 98.00 08.08
70:30 97.00 97.00 97.00 97.14
Average 97.80 97.80 97.80 97.91
98.60 1
98.40 BG4 9810 55,08
98.20
98.00 |
s 9780 \\
< 9760
8 9740 \337 14
3 9720
< 9700
96.80 , , , , ,
90:10 85:15 80:20 75:25 70:30

Natacat Train-Tect Ratin

Fig.8. Performance comparison of the Inception-V3 model on the brain tumor dataset across
varying train—test split ratios

https://revuetangence.com 193



N TANGENCE

." Number 137, 2025

Table 3. Performance Report of AlexNet model on Brain Tumor Dataset for different Train-Test ratios
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Train Model Used Precision (%) Recall (%) F1-Score (%) | Accuracy (%)
Validation
Ratio
90:10 94.00 94.00 94.00 93.54
85:15 92.00 92.00 92.00 03.83
80:20 AlexNet 94.00 94.00 94.00 93.30
75:25 93.00 93.00 93.00 93.79
70:30 92.00 92.00 92.00 90.42
Average Q032.00 03.00 032.00 92.97
95.00 -
93.83 93.79
94.00 93,54 9330
93.00 '/‘\/\
92.00 g \
91.00 g \
>
90.00 2 \ 90.42
89.00
88.00
90:10 -

Dataset Train-Test Ratio

Fig.9. Performance comparison of the AlexNet model on the brain tumor dataset across varying train—

test split ratios

5.1.2 Class-Wise Metrics for Glioma, Meningioma, and Pituitary

Actual

g
H

brain_tumor

brain_menin

Confusion Matrix

brain_glioma

rrrrrrrrrr

Fig.10. Confusion matrix of the Inception-V3 model trained and tested on a 90:10 train—test split of the

brain tumor dataset
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Fig.11. Training and validation performance of the Inception-V3 model on the brain tumor dataset with a
90:10 train—test split
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Fig.12. Confusion matrix of the AlexNet model trained and tested on a 90:10 train—test split of the brain
tumor dataset
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Fig.13. Training and validation performance of the AlexNet model on the brain tumor dataset with
a 90:10 train—test split
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5.2 Comparison with State-of-the-Art Methods
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Fig.14. Comparative analysis of the proposed classification models against existing methodologies for
brain tumor classification

6. Discussion

6.1 Analysis of Transfer Learning Impact

Pretrained weights from ImageNet provided the foundation for InceptionV3 to rapidly learn advanced
feature vectors that can be fine-tuned for brain MRI classification; whereas AlexNet's architecture does not
allow the transfer of learned weights as effectively as InceptionV3. A large portion of AlexNet's success was
due to the extensive training performed on multiple epochs and applying regularization techniques
during its training. Transfer Learning also decreased the training time, provided greater convergence
stability and increased generalization capability with respect to the active training dataset. In summary, this
study demonstrates that using pretrained deep learning architectures to develop classifiers for medical
images is an efficient way to obtain salient feature representation from the underlying data, thus allowing
for optimal knowledge reuse and adoption to be implemented in the development of deep learning
classifiers in settings where the number of labelled MRI training examples is very limited.

6.2 Interpretation of Classification Trends

The models used for this study are able to accurately identify different types of brain tumors, and the results
showed that InceptionV3 outperformed AlexNet by consistently identifying tumors more accurately. The
majority of misclassified samples exhibited some type of subtle boundary or low contrast within the image
due to the characteristics of these images. The major differences between the networks are that AlexNet is
more sensitive to noise and differed in terms of image orientation while InceptionV3 is able to characterize
finer characteristics using multi-scale inception modules. The results also indicate that the deeper the
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model and the greater the level of pre-training, the better its capacity to manage the variability between
multiple tumor classes and the complexity of MRI images. High levels of precision and recall are found for
both networks, which demonstrated excellent balanced detection of all three classes across all datasets. The
classification results affirm the role and applicability of CNN-based methods in the analysis of MRI for
assisting in the automated detection of tumors and indicate that using transfer learning can improve the
performance of models used to detect various types of tumor presentation.

6.3 Challenges Encountered

Deep Convolutional Neural Networks (CNNs) represent a powerful tool for processing brain MRI data. In
training, AlexNet struggled against overfitting from its high number of parameters compared with the
limited training dataset. Therefore, to combat overfitting, extensive data augmentation and dropout
methods were employed. Compared with AlexNet, InceptionV3's lower propensity for overfitting is largely
due to the use of transfer learning; however, careful fine-tuning was still necessary to prevent catastrophic
forgetting. The problem with class imbalance was dealt with by using stratified splitting so that each tumor
type was represented in the training sample. Other challenges included inconsistencies in the quality and
standardization of MRI and image orientation. However, with careful image augmentation, preprocessing
and learning rate scheduling, the two model types trained effectively with the potential for greater accuracy;
however, the effect of outliers (extreme variations in data) on the robustness of both models was still
considerable.

6.4 Clinical Relevance and Diagnostic Implications

Both deep learning models have demonstrated excellent accuracy and stability suggesting that both neural
networks have excellent potential for clinical use in diagnosing all types of brain tumors. The benefits of
AlexNet include being a low-complexity and rapid assessment option for initial diagnoses, while the
strength of InceptionV3 is its ability to identify tumors with much more precise and accurate results, as well
as being ideal for providing diagnostics on injuries requiring immediate attention. Along with providing
radiologists with reduced workloads through the automation of classifying tumors from MRIs, the
automated MRI classification will yield rapid preliminary assessments of patients and will greatly improve
the early detection of tumors. Furthermore, both models are capable of monitoring the progression
response of tumors to treatment by means of repeated imaging (MRI) provided to the patient. The use of
both CNN models will help improve the consistency and speed with which we interpret diagnostic images.
Overall, these examples of the potential impact that deep learning models, particularly through the process
of transfer learning can have in augmenting clinical decision-making in the area of neuro-oncology.

6.5 Limitations of the Current Study

The study did show Promise. However, it does have some limitations. For example, Even though the use of
augmentations did help with the size of the data set, the final dataset size is still relatively small compared
to other datasets making the generalizability of these results to other populations of patients that are not
represented in this dataset difficult to achieve. AlexNet took considerably longer to train and had a much
higher likelihood of overfitting than the InceptionV3 Model. Therefore, all features learned by the
InceptionV3 model from the pre-training of images in the natural useable world, may not capture every
nuance of the particular characteristic found in the medical picture domain. In addition to only using MRI
Scans, this study did not include multimodal imaging and thus may limit the applicability in the clinical
setting. The variations of real-world scanning protocols, noise and artifacts were also not fully investigated.
Future work should include using larger multi-institutional datasets, training different architectures of
CNNs and including multimodal imaging to continue to validate and improve the clinical deployment of the
models.
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7. Conclusion and Future Work
7.1 Summary of Key Findings

This study examined how well both Convolutional Neural Networks (CNNs), specifically AlexNet and
InceptionV3, could classify MRI scans of brain tumors and proved that AlexNet is able to achieve a higher
rate of accurate classifications (94%) than those that will be produced by any other models developed from
this data; therefore, this study shows that it can act as a baseline against which to measure the success of all
future CNNs trained on MRI brain tumor data. Although InceptionV3's transfer learning provided the best
accuracy of 98%, it was further supported by precision, recall, and F1 score measures, which also showed
InceptionV3 had superior ability to generalize over the traditional CNN model of AlexNet. Also, adding
augmentation of samples during training reduced overfitting and class imbalance to lower degrees. Thus,
CNNs should be regarded as useful tools for classifying brain tumors, with pretrained models like
InceptionV3 being much more trustworthy than traditional models like AlexNet.

7.2 Contributions to the Field

This research advances the fields of medical imaging and deep learning through demonstrating the
effectiveness of CNNs for automatic brain tumor classification. The comparison made between classic CNNs
(namely AlexNet) and modern pretrained CNN models (like InceptionV3) demonstrates how the
application of transfer learning can increase both accuracy and speed of training. Additionally, the protocols
established within the work for preprocessing, augmentation and fine-tuning the MRI data creates
solutions to problems associated with small data sets and an unfair distribution of class labels. These
contributions will provide a resource for future studies in neuro-oncology and encourage researchers to
implement deep learning models into their practice as a reliable, reproducible and clinically applicable tool
for diagnosing brain tumors on the basis of MRI data.

7.3 Recommendations for Future Research

Future research endeavors will seek to utilize larger multi-site datasets to enhance generalizability and
decrease possible bias when developing models. By utilizing multimodality imaging (e.g., fusing MRI scans
with CT or PET) to create better-defined tumors, new and more robust methods of feature extraction
can be developed using enhanced CNN construction and attention mechanisms like EfficientNet. In
addition, developing optimal transfer learning models through methods such as selective frozen layer
models and domain-specific pre-training will create opportunities to further enhance the accuracy of results
produced using deep learning methods. Moreover, by employing methods based on Explainable Artificial
Intelligence, clinicians will be able to understand how models produce results in more detail than would
otherwise be possible. Conducting longitudinal studies to monitor tumor growth and deploy models to the
clinic in real-time will provide evidence of the practical application of these methods. All combined, creating
more accurate diagnostic approaches using deep learning will firmly establish them as valuable clinical
tools.

7.4 Potential Integration into Clinical Workflows

The integration of both AlexNet and InceptionV3 can improve the radiology workflow the most. The con
for AlexNet is that it will not provide the accurate diagnosis of advanced preliminary results (high-quality
data) but will provide speed. Conversely, the advantage of InceptionV3 is that it can render the greatest
accuracy when determining the appropriate and essential decisions concerning the diagnosis. A hospital
using both AlexNet and InceptionV3 will likely reduce workload for radiologists and will expedite early
diagnosis (tumors) and continual assessment of how to treat patients. These systems, when integrated with
a PACS or EHR system, may also help radiologists by providing additional support in reaching an educated
diagnosis at the time of patient presentation combined with an imaging report. For example, if a user-
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friendly interface with visualization tools is built into the systems, this may create an enhanced capability
that will assist radiologists to interpret the results. Therefore, CNNs are an effective and valid complement
to neuro-oncology MRI research articles.
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