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Abstract: MRI-based classification of brain tumors is an important step in delivering timely and effective 

treatment. In this study, we tested a method that uses CNNs trained via transfer learning to classify the 

three main types of brain tumors (gliomas, meningiomas, and pituitary tumors). Mendeley dataset is taken 

into consideration, containing 6,056 MRI images (2004 brain glioma, 2004 brain meningioma, 2048 brain 

pituitary). Two types of CNN architectures were tested, AlexNet (trained from scratch) and InceptionV3 

(using the weights from ImageNet). All of the images were preprocessed before being fed to the models 
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using image resizing, normalization, and extensive augmentation to ensure accuracy and minimize class 

imbalance between the tumor categories. Effectively stratified train-test splits of the data allowed for fair 

performance evaluation of both models. The AlexNet model consistently achieved 94% accuracy, with a 

precision, recall, and F1-score of 94%, indicating that it could provide reliable performance when classifying 

brain tumors based on MRI. In contrast, the InceptionV3 model using transfer learning and fine-tuning 

performed even better than AlexNet, achieving 98% accuracy with a precision, recall, and F1- score of 98%. 

These results indicate that pre-trained convolutional neural network architectures provide increased 

classification reliability, significantly reduce training time, and are applicable to medical datasets that 

contain limited numbers of instances. The findings of this research study illustrate the potential for 

developing highly accurate and efficient automated deep learning technology to accurately diagnose neuro-

oncology diseases using transfer learning. This type of technology will provide a strong basis for Clinical 

Decision Support Systems (CDSS) that aid radiologists with the interpretation of diagnostic medical 

images. 

 

Keywords: Brain Tumor, Glioma, Meningioma, Pituitary Tumor, Transfer Learning, Image Classification, 

Brain Tumor Classification, Convolutional Neural Netrwok, Magnetic Resonance Imaging 

1. Introduction 

1.1 Background on Brain Tumors and MRI Diagnosis 

The abnormal intracranial growths of the cells of brain or nearby areas are the brain tumors whose 

localization, size and heterogeneity make diagnosis challenging. Standard MRI with T1, T2 and FLAIR 

sequences provides high contrast, non-invasive visualization of such lesions and is the imaging modality of 

choice for initial detection and characterization. [1][2] 

1.2 Challenges in Manual MRI Interpretation 

Manually interpreting MRI scans for brain tumor diagnosis takes a lot of time and it also heavily relies on 

the radiologist's expertise. It experiences significant inconsistencies both between different readers and 

within the same reader, for example, segmentation variability for brain tumors showed average Dice scores 

approximately 0.75 (95% CI 0.701-0.808) across various methods.[3][4] The variation in tumor 

characteristics (such as size, shape, location, and contrast) along with the imaging artifacts and differing 

acquisition protocols, makes it more difficult to accurately delineate and classify lesions, increasing the 

chance of misdiagnosis or postponement of treatment. [5][6] 

1.3 Research Gap and Motivation 

Although there has been significant advancement in the automation of MRI based brain tumor classification 

machine learning and deep learning methods, there are still several gaps exist in the literature. Many studies 

are based on single deep learning architectures and fail to compare multiple pretrained or transfer learning 

models to determine which would provide the greatest level of multiclass classification (for example, 

gliomas, meningiomas, pituitary tumors). [7][8] Class imbalances, heterogeneous datasets (including 

different protocols and MRI machines), and inefficient computational processes are rarely accounted for in 

the development of machine learning models. [9][10] Hence, there is a need to create an efficient, accurate, 

and robust classification system that uses transfer learning to diagnose multi-class brain tumors across 

multiple types of imaging equipment. 

1.4 Contributions of This Work 

In this study we proposed a classification pipeline for MRI using transfer learning to enable accurate 
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identification of glioma, meningioma, and pituitary tumors. Key contributions of this study include 

comparative analysis of pretrained CNN architectures, the use of effective preprocessing techniques and 

augmentation techniques and the enhanced accuracy in diagnosing brain tumors, thus providing a practical 

approach for automation of the diagnostic process for brain tumors. 

1.5 Paper Organization 

This paper is structured as follows: Section 2 of this paper contains related work on MRI-based brain tumor 

classification and transfer learning. Section 3 of this paper contains details about the dataset, preprocessing, 

and proposed transfer learning pipeline. Section 4 of this paper describes experiments and evaluation 

metrics. Sections 5 and 6 present results, discussion, and clinical implications, followed by conclusions in 

Section 7. 

2. Related Work 

2.1 Related Research works and Studies for Brain Tumor Classification 

Table 1. Comparative analysis of existing techniques and mythologies for Brain Tumor Classification 

S.No. Author Year Technology Used Performance Key Insight 

1 Y. Zhang [11] 2011 Wavelet transform, 

principle component 

analysis and back 

Accuracies on both 

training and test 

images are 100% 

Applied this method on 66 images 

(18 normal, 48 abnormal) and the 

computation time per image is 

   propagation (BP) NN  only 0.0451 s. 

 

2 

W. H. 

Ibrahim [12] 

 

2013 

Principle Component 

Analysis (PCA), and 

Back-Propagation 

Neural Network 

Classification 

accuracy of 96.33% 

3×58 datasets of MRI Brain segital 

images have been used for tainting 

and testing 

 

3 

N. 

Abdullah 

[13] 

 

2011 

Support vector 

machine (SVM) 

 

Accuracy of 65% 

Determination of normal and 

abnormal brain image is based on 

symmetry which is exhibited in 

the axial and coronal images 

 

4 

 

S. Kumar [14] 

 

2017 

Genetic algorithm and 

support vector machine 

(SVM) 

 

Accuracy between 80% 

and 90% 

Parameters used for analyzing the 

images are given as: entropy, 

smoothness, root mean square 

error (RMS), kurtosis and 

correlation 

 

 

5 

 

 

Z. Jia [15] 

 

 

2025 

Fully Automatic 

Heterogeneous 

Segmentation using 

Support Vector 

Machine (FAHS- SVM) 

 

98.51% accuracy in 

detecting abnormal 

and normal tissue 

Proposes the separation of the 

whole cerebral venous system into 

MRI imaging with the addition of a 

new, fully automatic algorithm 

based on structural, 

morphological, and relaxometry 

details 
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6 Badža, M. 

M. [16] 

2020 Convolutional Neural 

Network (CNN) 

Accuracy of 96.56% Tested on T1-weighted contrast- 

enhanced magnetic resonance 

images 

 

 

7 

 

Khan HA [17] 

 

 

2020 

 

VGG-16, ResNet-50, 

and Inception-v3 

models 

VGG-16 achieved 

96%, ResNet-50 

achieved 89% and 

Inception-V3 

achieved 75% 

accuracy 

Experiment is tested on a very 

small dataset but the experimental 

result shows that our model 

accuracy result is very effective and 

have very low complexity rate 

 

 

8 

 

Z. Ullah [18] 

 

 

2020 

 

Advanced Deep Neural 

Network (DNN) 

 

Obtained 95.8% 

accuracy 

Extracted features from an 

enhanced MR brain image using a 

discrete wavelet transform and 

these feature are further reduced 

by color moments i.e. mean, 

standard deviation, and skewness 

 

 

 

9 

 

 

 

M. Assam [19] 

 

 

 

2021 

Feed Forward - ANN 

(FF-ANN), a hybrid 

classifiers called: 

Random Subspace with 

Random Forest 

(RSwithRF) and 

Random Subspace 

with Bayesian Network 

(RSwithBN) 

 

FF-ANN gives 

95.83% accuracy, 

RSwithRF gives 

97.14% and 

RSwithBN gives 

95.71% accuracy 

 

Used images with brain tumor, 

acute stroke and alzheimer, besides 

normal images, from the public 

dataset developed by harvard 

medical school, for evaluation 

purposes 

 

10 

S. 

Chetana 

[20] 

 

2022 

Transfer learning- 

based CNN-pretrained 

VGG-16, ResNet-50, 

and Inception-v3 

models 

VGG-16 gives 

accuracy of 96.0%, 

Inception-v3 gives 

78% and ResNet50 

gives 95.0% 

 

MRI brain tumor images dataset 

consisting of 233 images 

2.2 Identified Research Gaps 

The results of investigation into the current MRI-based detection of brain abnormalities indicates the need 

for further investigation into a significant number of important limitations. A major limitation of early 

studies using wavelet transformations, PCA's, and BP-NNs is that although they were able to achieve 

significant levels of accuracy, their data sets typically consisted of very small numbers of images, e.g. 66- 

image dataset used in [11] by Y. Zhang and the 3×58-image dataset evaluated in [12] by W. H. Ibrahim, 

which severely limited the generalizability of the model. Analogously, models that rely on symmetry 

analysis and handcrafted feature extraction techniques, such as those described in [13] by N. Abdullah and 

[14] by S. Kumar, possess little to no capacity to adequately represent the full spectrum of tumor features 

due to a lack of representation of features from multiple tumor types, leading to decreased performance 

across many tumor types and MRI modalities. 
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Second, while recent methods utilizing deep learning (i.e., CNN and transfer learning based model) have 

demonstrated enhanced performance [16-18, 20], there remain dataset limitations that were recognized in 

many studies regarding limited sample sizes as well as missing many of the multimodal MRIs which 

precluded these networks from being able to identify heterogeneous tumor features. Additionally, most of 

the available literature centres predominantly on classification rather than development and evaluation of 

complete or end-to-end solutions for segmentation and diagnosis although there has been development of 

the FAHS-SVM segmentation algorithm for venous anatomical structures [15], highlighting an important 

gap regarding how to adequately create joint segmentation or classification models. Furthermore, as noted 

in numerous papers utilizing public datasets [19], studies vary in how they assess a dataset. The protocols 

utilized in assessing the datasets used vary significantly due to the use of different MRIs, imbalanced classes 

and a lack of cross validation between datasets, therefore making it virtually impossible to establish a 

standardized benchmark for reliably comparing models. Additionally, although the VGG-16 and RSwithRF 

methods are very high accuracy models [17-20], they do not appear to have been studied for their 

computational efficiency and scalability or whether they are applicable for clinical use in a real time setting, 

thus creating an opportunity for developing computationally optimized and clinically applicable solutions. 

 

3. Materials and Methods 

3.1 Dataset Description 

3.1.1 Source and Characteristics of MRI Dataset 

The Bangladesh Brain Cancer MRI Dataset [21] contains 6056 images that were collected in multiple 

hospitals across Bangladesh under the guidance of trained professionals. The MRI images were resized to 

512 by 512 pixels and represent three different types of tumors: 2004 Brain Glioma, 2004 Brain Menin, and 

2048 Brain Tumor. It provides machine learning and deep-learning experts with a valuable, comprehensive 

resource for developing and assessing algorithms for the automatic diagnosis of brain tumors. 

3.1.2 Tumor Classes: Glioma, Meningioma, Pituitary 

The dataset separates the different brain tumor types into 3 classifications: glioma, a malignant tumor that 

arises from glial cells, meningioma, which is generally a benign tumor that is located in the meninges, and 

pituitary tumor, which is found within the pituitary gland. This allows MRI multi-class classification for 

diagnosing & treating the brain tumor types accurately. [12] 

 

 

 

 

Fig.1. Representative MRI slices illustrating glioma-affected brain regions from the dataset 

 

Fig.2. Representative MRI slices illustrating meningioma-affected brain regions from the dataset 
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Fig.3. Representative MRI slices illustrating Tumor-affected brain regions from the dataset 

3.2 Preprocessing Pipeline 

 

Fig.4. Preprocessing pipeline illustrating the sequential operations applied to the brain tumor dataset, 

including image resizing and intensity normalization, data augmentation techniques, and the train– 

validation split strategy 

 

3.2.1 Image Resizing and Normalization 

The deep learning architecture AlexNet along with InceptionV3 requires input images to be in standard 

format of 224 x 224 pixels, so we resized the input MRI images into the standard format to match the input 

requirements of the networks. Standardizing all images to the same size increases efficiency because it 

permits one GPU processor to work through a complete set of images. By standardizing the size of every 

image, the order of all pixel array positions remains intact when using them for convolution. InceptionV3 

and AlexNet models also require that all pixel array values within an original input image be scaled back to 

a numeric range of [0, 1]. The normalization of pixel values increases the stability of the training process 

through gradient updates, thereby enhancing the learning rate. In addition to the standard image resizing 

and normalization processes, InceptionV3 requires additional specific image preprocessing when using the 

pretrained weights on the dataset so that the correct weights can be utilized when performing image 

classification. All of these preprocessing techniques assist in providing a uniform dataset input to the model, 

reduce computation resources needed to train the model, and enhance the ability of the model to rapidly 

learn and extract critical characteristics of images from MRI scans for the purpose of predicting their 

classification. 

3.2.2 Data Augmentation Techniques 

In order to mitigate overfitting and promote generalization of the models, we used augmented data for both 

AlexNet and InceptionV3. We used different augmentation techniques such as random rotations, zooming 

in, shifting the image both vertically and horizontally, flipping horizontally, changing brightness levels, and 

performing shear transformations; these techniques were intended to simulate realistic variations in MRI 

imaging. The increased effective number of images in the training dataset due to augmentations exposes 

the model to a greater variety of imaging environments which improves its ability to extract features 

effectively. While augmentations of AlexNet trained from scratch provided a tremendous benefit by way of 

additional examples due to limited amount of training data, augmentations for InceptionV3 provided a 

benefit as well from pretraining on trained imaging features and fine-tuning using high-level imaging 

features. These three approaches combined allowed both networks greater ability to generalize to 
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previously unseen images, and reduced the likelihood of biasing towards specific images due to orientation 

or brightness variation. 

 

Fig.5. Augmented MRI images generated from the brain tumor dataset. The figure illustrates a variety of 

applied augmentation transformations 

 

3.2.3 Train–Test Split Strategy 

To maintain an even representation of all classes within the training and testing datasets for both AlexNet 

and InceptionV3, we used stratified splitting. We have taken five different train-to-test ratios that are 10:90, 

15:85, 20:80, 25:75, and 30:70, to achieve the best balance between training and testing. The larger amounts 

of training data provided enough information for the models to learn the necessary features from the data, 

while the corresponding testing datasets provided a way of monitoring possible overfitting and also allowing 

for tuning of hyperparameters. The fine-tuning of InceptionV3 was enhanced by this method, by preserving 

previously learnt features from the pre-training stage. By using this method, both models were trained on 

diverse samples and thus reduced the chances of overfitting, as well as providing accurate metrics for 

comparative purposes for classification of brain MRIs. 

3.3 Transfer Learning Framework 

3.3.1 Overview of Transfer Learning Paradigm 

Transfer learning is a machine learning approach that takes advantage of what has already been learned by 

using large data sets to help with the performance of a machine learning task being trained with a limited 

data set (target task). In this research project, AlexNet was developed from scratch due to its simpler 

architecture than InceptionV3 and InceptionV3, on the other hand, utilized the pre-trained weights from 

ImageNet to jumpstart its transfer learning capabilities. By retaining the learned features from previous 

data sets within each model (and using them as inputs), it allows these models to be trained to identify 

relevant features in brain MRI scans much more quickly than if they were trained on the MRI images alone. 

Thus, using transfer learning allows both types of models to perform better when classifying the different 

types of brain tumors (increased accuracy) and to not be overfit (avoid classification inaccuracies due to 

overfitting). 

3.3.2 Selection of Pre-Trained CNN Architectures 

In this study we selected AlexNet and InceptionV3 models because they possess features that complement 

each other. AlexNet has a shallower architecture and fewer layers so that we can easily demonstrate how 

well it performs after being trained from scratch with the MRI images. On the other hand, the more 

advanced and deeper architecture of InceptionV3 has Inception modules that allow effective capturing of 

features at multiple scales with the use of pretrained ImageNet weights to develop superior classifiers from 
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features generated by millions of previously seen images. Therefore, we are capitalising on the advantages 

that both training methods have to offer that is the simplicity of AlexNet and the transfer learning 

capabilities of InceptionV3. Consequently, we are able to make a direct comparison of the feature 

extraction, rate of training convergence and classification accuracy for brain tumors between the two 

models. 

 

Fig.6. Basic Architecture of Convolution Neural Network 

 

3.3.3 Fine-Tuning Strategies and Layer Freezing 

In this study, for the fine-tuning of the pretrained InceptionV3 model we selectively unfreeze layers of the 

model to adapt it to the MRI image dataset retaining useful learned features that were acquired during 

original training. For the training of the model, we initially kept the lower layers of InceptionV3 frozen while 

we retrained the upper layers on MRI images to capture domain specific features. Then we took a gradual 

approach to reach our goal of fully fine-tuning InceptionV3 using the lower learning rate so as to avoid 

catastrophic forgetting. AlexNet on the other hand was trained from scratch and hence did not need to keep 

any of the layers frozen; however, various techniques of regularization and dropout were employed to 

mitigate the potential for overfitting. 

 

3.4 Proposed Classification Pipeline 

 

Fig.7. Proposed classification pipeline for brain tumor detection, illustrating the sequential stages of 

feature extraction, model architecture with custom layers, and optimization strategy 

3.4.1 Feature Extraction Process 

The feature extraction process changes the input image into an understandable representation for the 

classification to occur based on that representation. An example of this is AlexNet where the features were 

learned directly from MRI images by processing them with a series of convolutional and pooling layers that 

learned hierarchical feature representations of the model (edge detection, textures). With InceptionV3, the 

model used the pretrained weights from ImageNet as a good set of general purposes for learning features 

and fine-tuned these features onto the brain MRI data in order to learn the specifics of this domain. Both 
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AlexNet and InceptionV3 utilized convolutional operations to capture spatially embedded information 

within the image efficiently, allowing InceptionV3 to utilize its multiple-scale inception modules to learn 

the ability to capture fine and coarse features simultaneously, allowing the model to have a better ability to 

differentiate between tumor groupings and improve the overall classification. 

3.4.2 Model Architecture and Custom Layers 

The AlexNet architecture has five convolutional layers separated by max pooling layers, followed by fully 

connected layers for classification using dropout and softmax layers. The InceptionV3 architecture adds the 

ability to learn multi-scale features through the use of Inception modules along with deep convolutional 

layers and then performs global average pooling, followed by Densely Connected Layers and dropout layers 

for regularization. To perform brain MRI classification, we added custom layers onto both architectures. 

Dropout layers are used to control overfitting and Dense Layers are used as inputs for the determination of 

final classifications and decisions. Each of the models contains an optimal amount of depth, feature richness 

and the computational power needed for superior performance. 

3.4.3 Optimization Algorithms and Hyperparameters 

We used the Adam Optimizer for training both models, automatically adjusting learning rates based on 

each parameter to increase the speed of convergence. The initial learning rate 0.0001 is used for AlexNet 

during the training phase, where the model is trained from scratch.InceptionV3's initial learning rate of 

0.0001 during transfer learning and 0.00001 during fine-tuning. A loss function of categorical cross- 

entropy with label smoothing (0.1) is used to improve generalization. The batch size of 32 is used for 

training, along with early stopping and reduction of the learning rate on plateaus to prevent overfitting. 

Dropout rates of 0.5 in dense layers are used as a regularization technique. The hyperparameters that we 

set for training both models are selected to maximize efficiency and stability while also allowing for good 

generalization on the MRI dataset. 

 

3.5 Evaluation Metrics 

3.5.1 Accuracy, Precision, Recall, F1-Score 

  

Recall (Sensitivity) – Proportion of correctly predicted positives among actual positives. 
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3.5.2 Confusion Matrix Analysis 

The confusion matrix shows how the classification is performing by showing the number of True Positives, 

True Negatives, False Positives, and False Negatives from a classification model. It provides insight to see 

how the errors are being made on each individual class and provides a better way to see where 

misclassification is occurring. It will allow you to calculate other evaluation metrics such as accuracy, 

precision, recall, and F1-score. 

 

4. Experimental Setup 

4.1 Hardware and Software Specifications 

The selection of computer hardware (an Intel Core i7 processor, 32 GB of RAM, and an NVIDIA GeForce 

RTX 3080 Graphics card) allowed researchers to perform their deep-learning experiments as efficiently as 

possible in the shortest amount of time, compared to traditional computer systems. The use of high-speed 

HDDs to store/transfer MRI data provided researchers direct access for write/read operations in 

comparison to traditional methods. Windows 11 was chosen for use as the Operating System and Python 

3.10 was selected as the Programming Language. Data generated by AlexNet and InceptionV3 was used to 

facilitate research and testing on various combinations of hyperparameters, augmentations, and tuning 

techniques within the earliest timeframe possible. 

4.2 Implementation Environment 

The Keras API in TensorFlow 2.x made it possible to use this framework for the implementation of both 

AlexNet and Inception V3, allowing the design of models flexibly and providing for pretraining the models 

and setting up a pre-processing pipeline. A number of the features offered by TensorFlow provided the 

means for creating unique/custom layer designs with dropout and the global pooling layer types. 

Augmenting the training set using the ImageDataGenerator class allowed for developing an ensemble of 

possible input data for training and allows for loading of batches in real-time. By enabling the use of the 

Graphics Processing Unit to perform the forward and backward passes of the model more quickly through 

the use of CUDA and cuDNN and to visualize the training and validation metrics through TensorBoard, this 

development environment provided a clear path to support both the training from scratch of AlexNet and 

the fine-tuning of pre-trained models using Inception V3. 

4.3 Training Parameters and Batch Settings 

To optimize GPU memory and gradient stability, each model had a batch size of 32 that was utilized 

throughout the training process on our two models. The Adam optimizer was used at the beginning of 

training with an initial learning rate of 1e−4, which was then decreased to 1e−5 during its successful fine- 

tuning on the InceptionV3 model. Early stopping with patience set for five epochs also assisted with limiting 

overfitting; along with using the ReduceLROnPlateau method of the Adam Optimizer to help fine-tune the 

model, reducing the learning rate relative to the validation loss. For the two hundred twenty epochs that 

were run and ultimately the ten total epochs that were used to fine-tune InceptionV3, we froze all the non-

fine-tuned layers at the end of the training phase. Regularization due to dropout was introduced to one 

layer in the case of both Models where all fully connected layers (the input and output connections) utilized 

dropout rates of 50 percent. As such parameters ensure that convergence occurs in all instances of our fine-

tuning process even while also providing for effective training of MRIs utilizing the InceptionV3 

architecture. 
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4.4 Cross-Validation Protocol 

The use of stratified k-fold cross-validation is a method used to help evaluate how the models we train 

perform robustly and produce splits with less bias in regard to the imbalanced data. The training-testing 

ratio of the dataset was selected multiple times (10:90, 15:85, 20:80, 25:75, and 30:70) to ensure that the 

splits produced during stratified k-fold cross-validation had the same distributions of all classes across the 

various folds. Since each fold used to train and validate the model was separate and independent, we can 

use the average performance metrics (accuracy, loss, and F1 score) to provide a more reliable estimate of 

how our final model will perform when encountering previously unseen images from MRI scans, whilst 

minimizing the chance of overfitting. We were able to see how both AlexNet and InceptionV3 models 

generalized to new images. Cross-validation has provided valuable data to identify how hyperparameter 

tuning will be affected by the increasing volume of training data for both models. With cross-validation 

results, end-users may gain further insight into how they might select which model best suits their purposes 

in the future. 

 

5. Results 

5.1 Quantitative Results for Each Model 

5.1.1 Performance Comparison of CNN Architectures 

Table 2. Performance Report of Inception V3 model on Brain Tumor Dataset for different Train-Test 

ratios 

Train 
Validation 
Ratio 

Model Used Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

90:10  
 
Inception V3 

98.00 98.00 98.00 98.34 

85:15 98.00 98.00 98.00 97.91 

80:20 98.00 98.00 98.00 98.10 

75:25 98.00 98.00 98.00 98.08 

70:30 97.00 97.00 97.00 97.14 

Average 97.80 97.80 97.80 97.91 

 

 

 

 

 

 

 

 

 

 

Fig.8. Performance comparison of the Inception-V3 model on the brain tumor dataset across 

varying train–test split ratios 
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Table 3. Performance Report of AlexNet model on Brain Tumor Dataset for different Train-Test ratios 

Train 

Validation 

Ratio 

Model Used Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

90:10  

 

AlexNet 

94.00 94.00 94.00 93.54 

85:15 92.00 92.00 92.00 93.83 

80:20 94.00 94.00 94.00 93.30 

75:25 93.00 93.00 93.00 93.79 

70:30 92.00 92.00 92.00 90.42 

Average 93.00 93.00 93.00 92.97 

95.00 

94.00 

93.00 

92.00 

91.00 

90.00 

89.00 

88.00 

90:10 85:15 80:20 75:25 70:30 

Dataset Train-Test Ratio 

Fig.9. Performance comparison of the AlexNet model on the brain tumor dataset across varying train–

test split ratios 

5.1.2 Class-Wise Metrics for Glioma, Meningioma, and Pituitary 

 

Fig.10. Confusion matrix of the Inception-V3 model trained and tested on a 90:10 train–test split of the 

brain tumor dataset 
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Fig.11. Training and validation performance of the Inception-V3 model on the brain tumor dataset with a 

90:10 train–test split 

 

Fig.12. Confusion matrix of the AlexNet model trained and tested on a 90:10 train–test split of the brain 
tumor dataset 

 

Fig.13. Training and validation performance of the AlexNet model on the brain tumor dataset with 
a 90:10 train–test split 
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5.2 Comparison with State-of-the-Art Methods 
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Fig.14. Comparative analysis of the proposed classification models against existing methodologies for 

brain tumor classification 

 

6. Discussion 

6.1 Analysis of Transfer Learning Impact 

Pretrained weights from ImageNet provided the foundation for InceptionV3 to rapidly learn advanced 

feature vectors that can be fine-tuned for brain MRI classification; whereas AlexNet's architecture does not 

allow the transfer of learned weights as effectively as InceptionV3. A large portion of AlexNet's success was 

due to the extensive training performed on multiple epochs and applying regularization techniques 

during its training. Transfer Learning also decreased the training time, provided greater convergence 

stability and increased generalization capability with respect to the active training dataset. In summary, this 

study demonstrates that using pretrained deep learning architectures to develop classifiers for medical 

images is an efficient way to obtain salient feature representation from the underlying data, thus allowing 

for optimal knowledge reuse and adoption to be implemented in the development of deep learning 

classifiers in settings where the number of labelled MRI training examples is very limited. 

6.2 Interpretation of Classification Trends 

The models used for this study are able to accurately identify different types of brain tumors, and the results 

showed that InceptionV3 outperformed AlexNet by consistently identifying tumors more accurately. The 

majority of misclassified samples exhibited some type of subtle boundary or low contrast within the image 

due to the characteristics of these images. The major differences between the networks are that AlexNet is 

more sensitive to noise and differed in terms of image orientation while InceptionV3 is able to characterize 

finer characteristics using multi-scale inception modules. The results also indicate that the deeper the 
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model and the greater the level of pre-training, the better its capacity to manage the variability between 

multiple tumor classes and the complexity of MRI images. High levels of precision and recall are found for 

both networks, which demonstrated excellent balanced detection of all three classes across all datasets. The 

classification results affirm the role and applicability of CNN-based methods in the analysis of MRI for 

assisting in the automated detection of tumors and indicate that using transfer learning can improve the 

performance of models used to detect various types of tumor presentation. 

6.3 Challenges Encountered 

Deep Convolutional Neural Networks (CNNs) represent a powerful tool for processing brain MRI data. In 

training, AlexNet struggled against overfitting from its high number of parameters compared with the 

limited training dataset. Therefore, to combat overfitting, extensive data augmentation and dropout 

methods were employed. Compared with AlexNet, InceptionV3's lower propensity for overfitting is largely 

due to the use of transfer learning; however, careful fine-tuning was still necessary to prevent catastrophic 

forgetting. The problem with class imbalance was dealt with by using stratified splitting so that each tumor 

type was represented in the training sample. Other challenges included inconsistencies in the quality and 

standardization of MRI and image orientation. However, with careful image augmentation, preprocessing 

and learning rate scheduling, the two model types trained effectively with the potential for greater accuracy; 

however, the effect of outliers (extreme variations in data) on the robustness of both models was still 

considerable. 

6.4 Clinical Relevance and Diagnostic Implications 

Both deep learning models have demonstrated excellent accuracy and stability suggesting that both neural 

networks have excellent potential for clinical use in diagnosing all types of brain tumors. The benefits of 

AlexNet include being a low-complexity and rapid assessment option for initial diagnoses, while the 

strength of InceptionV3 is its ability to identify tumors with much more precise and accurate results, as well 

as being ideal for providing diagnostics on injuries requiring immediate attention. Along with providing 

radiologists with reduced workloads through the automation of classifying tumors from MRIs, the 

automated MRI classification will yield rapid preliminary assessments of patients and will greatly improve 

the early detection of tumors. Furthermore, both models are capable of monitoring the progression 

response of tumors to treatment by means of repeated imaging (MRI) provided to the patient. The use of 

both CNN models will help improve the consistency and speed with which we interpret diagnostic images. 

Overall, these examples of the potential impact that deep learning models, particularly through the process 

of transfer learning can have in augmenting clinical decision-making in the area of neuro-oncology. 

6.5 Limitations of the Current Study 

The study did show Promise. However, it does have some limitations. For example, Even though the use of 

augmentations did help with the size of the data set, the final dataset size is still relatively small compared 

to other datasets making the generalizability of these results to other populations of patients that are not 

represented in this dataset difficult to achieve. AlexNet took considerably longer to train and had a much 

higher likelihood of overfitting than the InceptionV3 Model. Therefore, all features learned by the 

InceptionV3 model from the pre-training of images in the natural useable world, may not capture every 

nuance of the particular characteristic found in the medical picture domain. In addition to only using MRI 

Scans, this study did not include multimodal imaging and thus may limit the applicability in the clinical 

setting. The variations of real-world scanning protocols, noise and artifacts were also not fully investigated. 

Future work should include using larger multi-institutional datasets, training different architectures of 

CNNs and including multimodal imaging to continue to validate and improve the clinical deployment of the 

models. 
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7. Conclusion and Future Work 

7.1 Summary of Key Findings 

This study examined how well both Convolutional Neural Networks (CNNs), specifically AlexNet and 

InceptionV3, could classify MRI scans of brain tumors and proved that AlexNet is able to achieve a higher 

rate of accurate classifications (94%) than those that will be produced by any other models developed from 

this data; therefore, this study shows that it can act as a baseline against which to measure the success of all 

future CNNs trained on MRI brain tumor data. Although InceptionV3's transfer learning provided the best 

accuracy of 98%, it was further supported by precision, recall, and F1 score measures, which also showed 

InceptionV3 had superior ability to generalize over the traditional CNN model of AlexNet. Also, adding 

augmentation of samples during training reduced overfitting and class imbalance to lower degrees. Thus, 

CNNs should be regarded as useful tools for classifying brain tumors, with pretrained models like 

InceptionV3 being much more trustworthy than traditional models like AlexNet. 

7.2 Contributions to the Field 

This research advances the fields of medical imaging and deep learning through demonstrating the 

effectiveness of CNNs for automatic brain tumor classification. The comparison made between classic CNNs 

(namely AlexNet) and modern pretrained CNN models (like InceptionV3) demonstrates how the 

application of transfer learning can increase both accuracy and speed of training. Additionally, the protocols 

established within the work for preprocessing, augmentation and fine-tuning the MRI data creates 

solutions to problems associated with small data sets and an unfair distribution of class labels. These 

contributions will provide a resource for future studies in neuro-oncology and encourage researchers to 

implement deep learning models into their practice as a reliable, reproducible and clinically applicable tool 

for diagnosing brain tumors on the basis of MRI data. 

7.3 Recommendations for Future Research 

Future research endeavors will seek to utilize larger multi-site datasets to enhance generalizability and 

decrease possible bias when developing models. By utilizing multimodality imaging (e.g., fusing MRI scans 

with CT or PET) to create better-defined tumors, new and more robust methods of feature extraction 

can be developed using enhanced CNN construction and attention mechanisms like EfficientNet. In 

addition, developing optimal transfer learning models through methods such as selective frozen layer 

models and domain-specific pre-training will create opportunities to further enhance the accuracy of results 

produced using deep learning methods. Moreover, by employing methods based on Explainable Artificial 

Intelligence, clinicians will be able to understand how models produce results in more detail than would 

otherwise be possible. Conducting longitudinal studies to monitor tumor growth and deploy models to the 

clinic in real-time will provide evidence of the practical application of these methods. All combined, creating 

more accurate diagnostic approaches using deep learning will firmly establish them as valuable clinical 

tools. 

7.4 Potential Integration into Clinical Workflows 

The integration of both AlexNet and InceptionV3 can improve the radiology workflow the most. The con 

for AlexNet is that it will not provide the accurate diagnosis of advanced preliminary results (high-quality 

data) but will provide speed. Conversely, the advantage of InceptionV3 is that it can render the greatest 

accuracy when determining the appropriate and essential decisions concerning the diagnosis. A hospital 

using both AlexNet and InceptionV3 will likely reduce workload for radiologists and will expedite early 

diagnosis (tumors) and continual assessment of how to treat patients. These systems, when integrated with 

a PACS or EHR system, may also help radiologists by providing additional support in reaching an educated 

diagnosis at the time of patient presentation combined with an imaging report. For example, if a user-
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friendly interface with visualization tools is built into the systems, this may create an enhanced capability 

that will assist radiologists to interpret the results. Therefore, CNNs are an effective and valid complement 

to neuro-oncology MRI research articles. 
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